Water Splitting into H_2 and O_2 over $Ba_5Nb_4O_{15}$ Photocatalysts with Layered Perovskite Structure Prepared by Polymerizable Complex Method

Yugo Miseki,¹ Hideki Kato,¹ and Akihiko Kudo^{*1,2}

¹Department of Applied Chemistry, Faculty of Science, Tokyo University of Science,

1-3 Kagurazaka, Shinjyuku-ku, Tokyo 162-8601

²Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST)

(Received June 28, 2006; CL-060728; E-mail: a-kudo@rs.kagu.tus.ac.jp)

Photophysical and photocatalytic properties of $Ba₅Nb₄O₁₅$ with four-layered perovskite structure were investigated. The band gap of $Ba₅Nb₄O₁₅$ was 3.9 eV. A broad emission band of green photoluminescence was observed at 77 K. NiO/ $Ba₅Nb₄O₁₅$ pretreated by H₂ reduction followed by O₂ oxidation showed a high activity for water splitting under UV light irradiation.

Photocatalytic water splitting into H_2 and O_2 in a stoichiometric ratio, an uphill reaction, is an important topic. The construction of the library of photocatalysts is important to obtain a guiding principle to design highly active photocatalysts. It has been reported that many metal oxide photocatalysts can decompose water into H_2 and O_2 in a stoichiometric ratio under UV irradiation. $1-14$ In particular, many tantalates are highly active photocatalysts for water splitting.^{2,6–9,12–14} The band gaps of niobates are usually narrower than those of tantalates. Therefore, it is expected that niobates can work as photocatalysts at longer wavelength than tantalates. However, only $A_4Nb_6O_{17}$ $(A = K \text{ and } Rb)$,¹ ZnNb₂O₆,⁴ Sr₂Nb₂O₇,^{5,6} and Cs₂Nb₄O₁₁¹¹ have been reported as niobate photocatalysts for water splitting. Many active photocatalysts possess perovskite-related structures.^{1,2,5–10,12–15} Ba₅Nb₄O₁₅ possesses a four-layered perovskite structure, in which a plane in parallel with (111) of a perovskite structure is exposed at interlayer.¹⁶ Thus, the exposed plane of $Ba₅Nb₄O₁₅$ is different from those of other layered perovskite photocatalysts, $K_2 La_2 Ti_3 O_{10}^1$ and RbLaTa₂O₇⁷ with a (100) plane and $Sr₂M₂O₇$ (M = Nb and Ta)⁶ with a (110) plane. Recently, $A_5Ta_4O_{15}$ (A = Sr and Ba) possessing the same structure as $Ba₅Nb₄O₁₅$ has been reported as an efficient photocatalyst.^{12,13} Therefore, photocatalytic function of $Ba₅Nb₄O₁₅$ is also expected. In the present paper, we investigated photophysical properties and photocatalytic activity of $Ba₅Nb₄O₁₅$ for water splitting.

 $Ba₅Nb₄O₁₅$ powder was prepared by a conventional solidstate reaction (SSR) and a polymerizable complex method $(PC).$ ¹⁵ In the case of a SSR method, $Ba₅Nb₄O₁₅$ was prepared from BaCO₃ (Kanto Chemical; 99.0%) and Nb_2O_5 (Kanto Chemical; 99.95%). The starting materials were mixed in a mortar, and the mixture was calcined at 1473 K in air using an alumina crucible. In the case of a PC method, the precursor was obtained by pyrolysis of a citrate-complexes containing Ba^{2+} and Nb⁵⁺ and was calcined at 973–1273 K. Phase purity of the obtained powder was confirmed by X-ray diffraction (Rigaku; MiniFlex). NiO cocatalysts were loaded by an impregnation method from an aqueous $Ni(NO₃)₂$ solution. The powder was calcined at 543 K for 1 h in air. Pretreatment of reduction with 26.6 kPa of H_2 at 773 K for 2 h followed by oxidation with

13.3 kPa of O_2 at 473 K for 1 h was carried out for NiO/ $Ba₅Nb₄O₁₅$, if necessary. Diffuse reflection spectra were obtained using a UV–vis–NIR spectrometer (Jasco; UbestV-570) and were converted from reflectance to absorbance by the Kubelka–Munk method. Photoluminescence spectra were measured at 77 K (HORIBA JOBIN YVON: SPEX Fluorolog-3). Water-splitting reactions were carried out in a gas-closed circulation system. The photocatalyst powder (0.5 g) was dispersed in pure water (380 mL) by a magnetic stirrer in an inner irradiation reaction cell made of quartz equipped with a 400-W high-pressure mercury lamp. The amounts of evolved H_2 and O_2 were determined using on-line gas chromatography (Shimadzu; MS-5A column, TCD, Ar carrier).

Figure 1 shows photoluminescence spectra at 77 K and a diffuse reflection spectrum of $Ba₅Nb₄O₁₅$ prepared by a SSR method. The band gap was estimated to be 3.9 eV from the onset of absorption (322 nm). $Ba₅Nb₄O₁₅$ showed a broad green emission with a maximum at 532 nm as previously reported.¹⁷ The onset of the excitation spectrum agreed with that of the absorption spectrum. All of the niobate photocatalysts for water splitting show photoluminescence at 77 K .¹¹ The observation of photoluminescence indicates that nonradiative transition between photogenerated carriers is suppressed. This property is advantageous for showing photocatalytic activity.

Table 1 shows photocatalytic activities of $Ba₅Nb₄O₁₅$ prepared by SSR and PC methods. Native Ba₅Nb₄O₁₅ prepared by the SSR method produced H_2 and O_2 . The activity was increased when a NiO cocatalyst was loaded. Moreover, the activity of $NiO/Ba₅Nb₄O₁₅$ was improved one order of magnitude by activation pretreatment of H_2 reduction followed by O_2 oxidation. It indicates that the conduction band level of $Ba₅Nb₄O₁₅$ is not negative enough to inject into NiO cocatalysts without

Figure 1. (a) A diffuse reflection spectrum at room temperature, (b) excitation, and (c) emission spectra at 77 K of $Ba₅Nb₄O₁₅$.

Table 1. Photocatalytic water splitting over $Ba₅Nb₄O₁₅$ ^a

Preparation method	Calcination condition	S.A. $\rm{/m^2\,g^{-1}}$	NiO /wt $%$	Pre- treatment ^b	Activity / μ mol h ⁻¹	
					H ₂	O ₂
SSR	1473 K, 10h	0.7	None	N ₀	10	3
			0.2	N ₀	70	35
			0.2	Yes	650	245
PC	973 K. 10h	14.5	None	N ₀	3	Ω
			0.1	Yes	1393	669
			0.7	Yes	2366	1139
	1073 K, 5h	7.2	0.1	Yes	1041	497
			0.7	Yes	2229	1106
	1273 K, 5h	1.9	0.1	Yes	939	453

^aCatalyst (0.5 g), pure water (380 mL), inner irradiation cell made of quartz, 400-W high-pressure mercury lamp. ${}^{\text{b}}H_2$ reduction at 773 K for 2 h and subsequent O_2 oxidation at 473 K for 1 h.

activation pretreatment.²

The activity of $NiO/Ba_5Nb_4O_{15}$ prepared by the PC method was higher than that prepared by the SSR method when the calcination condition and the amount of NiO were optimized for each method. Figure 2 shows SEM images of $Ba₅Nb₄O₁₅$ prepared by SSR and PC methods. The particle size of $Ba₅Nb₄O₁₅$ prepared by the SSR method was a few micrometers while that by the PC method was about 100–200 nm. Thus, it was revealed that the particle size of $Ba₅Nb₄O₁₅$ was remarkably reduced by the PC method. The photogenerated carriers have to arrive at the external surface to induce a photocatalytic reaction, except for photocatalysts possessing hydrated interlayer spaces, such as $K_4Nb_6O_{17}$ and $K_2La_2Ti_3O_{10}.$ ¹ Although Ba₅Nb₄O₁₅ possesses a layered structure, its interlayer space is not hydrated as well as $Sr₂Nb₂O₇$. Therefore, the small particle size obtained by the PC method is favorable for photocatalytic performance because photogenerated carriers easily reach the surface. Moreover, plate-like crystals were dominantly obtained by the PC method, implying selective growth of slanted perovskite sheets along a (111) plane. Therefore, the activity of the sample prepared by the PC method was higher than that by the SSR method.

The optimized NiO $(0.7 \text{ wt\%})/Ba_5Nb_4O_{15}$ photocatalyst steadily produced H_2 and O_2 at the rates of 2.4 and 1.2 mmol/ h, respectively, as shown in Figure 3. After 4.5 h of irradiation, 10.9 mmol of H_2 and 5.3 mmol of O_2 produced. The turnover number of the amount of reacted electrons/holes to the molar quantity of $Ba₅Nb₄O₁₅$ was 51. It clearly indicated that the reaction proceeded photocatalytically. The apparent quantum yield was 8% at 270 nm.

In conclusion, $Ba₅Nb₄O₁₅$ with a characteristic perovskite structure and a green photoluminescent property at 77 K was

Figure 2. Scanning electron microscope photographs of Ba₅- $Nb₄O₁₅$ prepared by (a) SSR and (b) PC methods (1073 K, 5 h).

Figure 3. Photocatalytic water splitting over pretreated NiO $(0.7 \text{ wt\%})/Ba_5Nb_4O_{15}$. Catalyst $(0.5 g)$, pure water (380 mL) , inner irradiation cell made of quartz, 400-W high-pressure mercury lamp.

found to be a new niobate photocatalyst material for water splitting. $NiO/Ba₅Nb₄O₁₅$ was a highly efficient photocatalyst among niobates when the activation pretreatment was carried out. The PC-method was superior to the SSR method for preparation of the $Ba₅Nb₄O₁₅$ photocatalyst. The framework of the perovskite structure is distorted,¹⁶ resulting in appearance of polarization as observed for $Sr_2Nb_2O_7$.⁶ It is considered that this characteristic structure of the perovskite layer brings out the high photocatalytic ability.

This work was supported by Core Research for Evolutional Science and Technology (CREST) of Japan Science and Technology Agency (JST) and a Grant-in-Aid (No. 14050090) for the Priority Area Research (No. 417) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- 1 K. Domen, J. N. Kondo, M. Hara, T. Tanaka, Bull. Chem. Soc. Jpn. 2000, 73, 1307, and references therein.
- 2 H. Kato, A. Kudo, Catal. Today 2003, 78, 561, and references therein.
- 3 J. Sato, H. Kobayashi, K. Ikarashi, N. Saito, H. Nishiyama, Y. Inoue, J. Phys. Chem. B 2004, 108, 4349, and references therein.
- 4 A. Kudo, S. Nakagawa, H. Kato, Chem. Lett. 1999, 1197.
- 5 H. G. Kim, D. W. Hwang, J. Kim, Y. G. Kim, J. S. Lee, Chem. Commun. 1999, 1077.
- 6 A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B 2000, 104, 571.
- 7 M. Machida, J. Yabunaka, T. Kijima, Chem. Mater. 2000, 12, 812.
- 8 K. Shimizu, Y. Tsuji, M. Kawakami, K. Toda, T. Kodama, M. Sato, Y. Kitayama, Chem. Lett. 2002, 1158.
- 9 H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc. 2003, 125, 3082.
- 10 A. Kudo, H. Kato, I. Tsuji, Chem. Lett. 2004, 33, 1534, and references therein.
- 11 Y. Miseki, H. Kato, A. Kudo, Chem. Lett. 2005, 34, 54.
- 12 H. Otsuka, K. Kim, A. Kouzu, I. Takimoto, H. Fujimori, Y. Sakata, H. Imamura, T. Matsumoto, K. Toda, Chem. Lett. 2005, 34, 822.
- 13 K. Yoshioka, V. Petrykin, M. Kakihana, H. Kato, A. Kudo, J. Catal. 2005, 232, 102.
- 14 M. Machida, T. Mitsuyama, K. Ikeue, J. Phys. Chem. B 2005, 109, 7801.
- 15 M. Kakihana, K. Domen, MRS Bull. 2000, 25, 27.
- 16 T. A. Vanderah, T. R. Collins, W. Wong-Ng, R. S. Roth, L. Farber, J. Alloys Compd. 2002, 346, 116.
- 17 A. M. Srivastava, J. F. Ackerman, W. W. Beers, J. Solid State Chem. 1997, 134, 187.